The Crystal Structure of K₂AgI₃ and Isomorphous Substances*

BY CLARA BRINK AND H. A. STENFERT KROESE

Laboratory of Inorganic Chemistry of the University, Leiden, Holland

(Received 23 November 1951)

 K_2AgI_3 is orthorhombic with cell dimensions: a = 19.52, b = 9.98, c = 4.74 Å. The axial ratios are in agreement with the values derived by Penfield from crystallographic measurements, if his b axis is halved. There are four molecules in the cell and the space group is *Pbnm*. Weissenberg diagrams have been taken along the c axis with Mo Ka radiation and the positions of the atoms have been fixed by 'trial and error' and by a Fourier projection along the c axis.

The structure is closely related to that of K_2CuCl_3 . All atoms lie in two symmetry planes perpendicular to the *c* axis. There are chains of composition AgI_3 in the direction of the *c* axis, with structure analogous to the chains in K_2CuCl_3 , although their packing is quite different. The surroundings of the potassium ions are very similar. In both structures they are situated between the chains and are surrounded by six halogen ions at the corners of a trigonal prism and one more halogen ion on a lateral face.

 $\rm Rb_2AgI_3$ and $\rm (NH_4)_2AgI_3$ are approximately isomorphous with $\rm K_2AgI_3$ and are shown to have the same structure.

Introduction

In their description of compounds of composition $A_2^{1}B^{1}(\text{Hal.})_3$ Wells, Wheeler & Penfield (1892) assumed that Rb_2AgI_3 and K_2AgI_3 were isomorphous with Cs_2AgCl_3 . In the first paper of this series (Brink & MacGillavry, 1949) it was found that Cs_2AgCl_3 , Cs_2AgI_3 and K_2CuCl_3 are isomorphous and that the axes chosen by Penfield are not those of the truly orthorhombic cell. In this paper a structural investigation of another isomorphous series of compounds K_2AgI_3 , Rb_2AgI_3 and $(\text{NH}_4)_2\text{AgI}_3$ will be described. For these compounds the axes of the orthorhombic unit cell found by X-ray methods have the same orientation as those chosen by Penfield. Thus there is no longer an apparent isomorphism between the two series.

 K_2AgI_3 , Rb_2AgI_3 and $(NH_4)_2AgI_3$ were prepared by saturating a warm concentrated solution of the alkali iodide with silver iodide. They are colourless needles which do not decompose in air.

The unit cell, space group and atomic positions

 K_2AgI_3 , Rb_2AgI_3 and $(NH_4)_2AgI_3$ are orthorhombic. The cell dimensions (Table 1) were determined from oscillation diagrams about the needle axis [001] with

Table 1. Cell dimensions

	a (Å)	b (Å)	c (Å)
K_2AgI_3	$19{\cdot}52 \pm 0{\cdot}02$	9.98 ± 0.02	$4 \cdot 74 \pm 0 \cdot 04$
Rb_2AgI_3	20.0 ± 0.1	10.3 ± 0.1	4.9 ± 0.1
$(NH_4)_2 AgI_3$	21.3 ± 0.1	10.9 ± 0.1	$4 \cdot 6 \pm 0 \cdot 1$

* The crystal structure of K_2AgI_3 has already been published as part of the doctorate thesis of C. Brink (Leiden, 1950). Cu $K\alpha$ radiation. The axial ratio found for K_2AgI_3 , a:b:c = 1.956:1:0.475, is in agreement with Penfield's axial ratio if his *b* period is halved, giving 1.954:1:0.468.

The density of the K_2AgI_3 -crystals was found to be 3.9 g.cm.⁻³; the calculated density for four K_2AgI_3 in the unit cell is 4.08 g.cm.⁻³.

The following reflexions were found on the zero-, first- and second-layer-line Weissenberg diagrams along [001]: hkl all orders, hk0 all orders, h0l only for h+l even, 0kl only for k even. Thus the space group is Pbnm or Pbn. The structure was developed on the assumption that the space group was Pbnm. This space group has two symmetry planes perpendicular to the c axis at a distance $\frac{1}{2}c$ apart. As in the first series of compounds of composition $A_2^{I}B^{I}$ (Hal.)₃ (Brink & MacGillavry, 1949), the corresponding reflexions in all even layer lines along [001] are similar and the same is true for the reflexions in the odd layer lines. In this structure, therefore, all atoms are also situated in two planes (001) at a distance $\frac{1}{2}c$ apart. Both the potassium and iodine ions are so large that they must lie in the symmetry planes and not between them. Thus all the atoms lie in the symmetry planes. It was possible to find atomic positions in these planes in agreement with the observed intensities. This justified the choice of *Pbnm* as the space group.

Structure determination

Comparison of the c periods of K_2AgI_3 (4.74 Å) and K_2CuCl_3 (4.20 Å) suggests that the chains of tetrahedra of composition BX_3 found in K_2CuCl_3 also occur in K_2AgI_3 . Attempts to place these chains in the cell in such a way that the potassium ions could fit into

the open space between them, led to a trial structure in agreement with the intensities of the lower orders. The co-ordinates of this trial structure are listed in Table 2.

Table 2. 'Trial' parameters for K₂AgI₃

	x/a	y/b
Ag	0.133	0.125
$I(\overline{I})$	0.272	0.167
I(II)	0.061	0.375
I(III)	-0.100	0.033
K(I)	0.694	0.100
K(II)	0.597	-0.122

The signs derived from this model were used to calculate a Fourier synthesis of 90 out of the 130 hk0 reflexions observed with Mo $K\alpha$ radiation. The structure factors were derived from a zero-layer-line Weissenberg photograph. The intensities were measured by visual comparison with an intensity scale photographed with the same crystal. Correction was made in the usual way with the Lorentz and polarization factors.

In this first Fourier projection some of the atoms had moved rather considerably. In the trial structure both of the potassium ions were surrounded by six iodine ions, but the electron-density map showed that they had to be moved to positions in which they would be surrounded by seven iodine ions. Further Fourier syntheses were made and the result of the third one is given in Fig. 1. The background is still rather uneven, but does not reach a height of more than 15 e.Å⁻² (the highest peak in the projection reaches 135 e.Å⁻²). As a result of their relatively low scattering power, the potassium ions cannot be located as accurately as the other ions. The final co-ordinates are given in Table 3.

Fig. 1. Electron-density projection of K_2AgI_3 along [001]. Contours at intervals of 10 e.Å⁻² for potassium and 20 e.Å⁻² for the other atoms. The lowest contour line, at 5 e.Å⁻², is broken.

Table 3.	Final	narameters	for	K Ac	rT.
T W M M O				110/12	

	x/a	y/b
Ag	0.132	0.129
I(I)	0.278	0.187
I(II)	0.020	0.382
I(III)	-0.099	0.008
K(I)	0.714	0.020
K(II)	0.464	0.249

Fig. 2. Structure factors F(hk0) for K_2AgI_3 . Full line, calculated values; broken line, observed values. Mo $K\alpha$ radiation.

Table	4.	Observed	intensities	for	some	lower	hk1	re
flexa	ions	s of K_2Agl	[₃ and correc	spon	ding c	alculat	ed sta	ruc
ture	fac	ctors assur	ning point	aton	ns.			

hk	$10^3 \sin^2 heta_{ m Cu}$	I_{Mo}	F_c
51	72	88	- 75
42	75	_	0
13	82	8	+82
23	86	m	-43
52	89	mw	-39
61	89	w	-19
33	94		- 1
70	103	w	+33
43	105	vw	-24
62	106	w	+43
71	109	ms	+55
53	119	mw	-42
04	121	w	-47
14	123	ms	-76
72	127	w	+44
24	128	w	+30
81	132	8	+90
34	135	8	-119
63	136	88	+124
44	146	vw	-35
82	149	8	+87
90	153	m	+65
73	156	vw	-27
91	158	m	-59
54	160		+17
15	177	mw	-55
64	177	—	+25
92	177		+21

Mo $K\alpha$ radiation. ss = very strong, s = strong, ms = medium-strong, m = medium, mw = medium-weak, w = very weak.

The structure factors F(hk0) were calculated with the co-ordinates derived from the second electrondensity map and the scattering powers tabulated in the *Internationale Tabellen*. No temperature factor was applied. These structure factors and the corresponding experimental ones are shown in Fig. 2. Table 4 compares the observed intensities for some lower reflexions hk1 with the structure factors calculated for point atoms. Table 5 gives the calculated distances in K_2AgI_3 and, for comparison, also the Ag–I and the K–I distances in AgI and KI.

Isomorphous substances

The other substances investigated were Rb_2AgI_3 and $(NH_4)_2AgI_3$. Table 6 gives for some lower-order reflexions the intensities observed for these compounds and the structure factors calculated assuming that the co-ordinates are the same as found for K_2AgI_3 . There are some discrepancies between the observed intensities and the calculated structure factors, but this may be a result of small differences in the parameters. The agreement seems good enough to conclude that both Rb_2AgI_3 and $(NH_4)_2AgI_3$ are isostructural with K_2AgI_3 .

Discussion of the structure

The structure of K_2AgI_3 is very like that of K_2CuCl_3 , as can be seen by comparing the projections of the

Fig. 3. Projection of the unit cell of K_2AgI_3 along [001]. There are four chains of tetrahedra in the direction of the c axis. Ag is at the centres of the tetrahedra, I at the corners. The surroundings of K(I) at $z = \frac{3}{4}$ are: 1 I at $z = \frac{3}{4}$, 3 I at $z = \frac{1}{4}$ and 3 I at $z = \frac{5}{4}$. The surroundings of K(II) at $z = \frac{1}{4}$ are: 3 I at $z = \frac{1}{4}$, 2 I at $z = \frac{3}{4}$ and 2 I at $z = -\frac{1}{4}$.

Table 5. Calculated distances in K₂AgI₃

Ag-I(I)	In the same symmetry plane	$(1 \times)$	2·85 Å
Ag-I(II)	In the same symmetry plane	$(1\times)$	2.82
Ag-I(III)	In different symmetry planes	$(2 \times)$	2.83
K(I)–I(III')	In the same symmetry plane	$(1 \times)$	3.70
$\mathbf{K}(\mathbf{I}) - \mathbf{I}(\mathbf{II})$	In different symmetry planes	$(2\times)$	3.71
$\mathbf{K}(\mathbf{I}) - \mathbf{I}(\mathbf{I})$	In different symmetry planes	$(2 \times)$	3.62
K(I)–I(I′)	In different symmetry planes	$(2 \times)$	3.49
K(II)-I(I)	In the same symmetry plane	$(1 \times)$	3.68
KIII–IIII'')	In the same symmetry plane	$(1 \times)$	3.69
KÌII)–IÌII'')	In the same symmetry plane	$(1 \times)$	3.72
K(II)–I(III')	In different symmetry planes	$(2 \times)$	3.61
K(II)–I(II′)	In different symmetry planes	$(2 \times)$	3.41
Ag-I	In AgI with zincblende structure		2.80
K–I	In KI		3.52

Table 6. Observed intensities and calculated structure factors F(hk0) for the lower orders of Rb_2AgI_3 and $(NH_4)_2AgI_3$ computed with the parameters found for K_0AgI_3 .

	Rb_2	AgI ₃	(NH_4)	$_2AgI_3$
hk	$\widetilde{I_{ ext{Cu}}}$	F _c	I _{Cu}	Fc
21	88	+30	ms	+37
31	m	-18	w	-33
02		_		+11
40	w	-19	ms	44
12	ms	+16	w	+35
22	vw	+ 6	m	+40
41		+ 9	w	+40
32	ms	-35	ms	-50
51	8	-79	w	-57
42	8	-65	8	-61
13	8	+49	m	+51
60	88	-85	8	- 85
23	88	+83	ms	+ 59
52	ms	- 56	w	- 52
61	ms	64	m	- 51
33		+ 5		+1
43	w	+ 12	vw	+ 12
62	vw	- 20	vw	20 61
71	8	+82	<i>m</i>	-16
03 04	w	- 19	11t m	
04	m	- 10	111 mo	-60
14	88	05		-18
80	w		m	+5
80 94		- 13		-2
24	m	+ 25	27217	$+3\bar{6}$
94		+ 1	11	+19
63	7768	- 70		+24
44	1168	+21	m	+13
82		+		- 1
73	8	- 96	88	-99
91	20	-22		+36
54	m.	-38	w	-29
15	 m.s	+44	m	+43
64		-2	_	+ 2
92	ms	+83	m	+68
83	vw	-11	w	-11
25	ms	-52	w	-49
10,0		+14	w	+14
10,1	8	-48	w	-42
35	vw	+14	_	+28
74	vw	+12	w	+21
45	ms	-63	vw	-30
10,2	8	+69	w	+38
93	m	+40	8	+43
55	ms	-60	88	-73
11,1	w	+25		+19
84		+ 6	vw	+14
65	vw	+26	w	+32

unit cells given in Figs. 3 and 4. In both structures chains of tetrahedra run in the direction of the *c* axis, though in K_2AgI_3 the tetrahedra are more regular than in K_2CuCl_3 . The surroundings of the potassium

ions are also very similar: the ions named K(I) in the two structures have nearly identical immediate surroundings, and the same applies to the ions named K(II). In K_2AgI_3 the seven iodine ions round K(I)belong to two chains of tetrahedra: four to one chain

Fig. 4. Projection of the unit cell of K₂CuCl₃ along [001]. Broken lines: half of Penfield's pseudo-orthorhombic cell.

and three to the other; in K_2CuCl_3 , however, this 4:3 arrangement is replaced by 4:2:1. Round K(II) the arrangements are 3:2:1:1 in K_2AgI_3 and 3:3:1 in K_2CuCl_3 . In both structures the surroundings of the negative ions by the positive ions is such that the electrostatic valence rule of Pauling (1939) is satisfied. Fig. 4 shows the relationship between the true unit cell and Penfield's pseudo orthorhombic cell of K_2CuCl_3 . If half of Penfield's cell is compared with the unit cell of K_2AgI_3 it is seen that the dimensions of these cells are very similar, but the packing of the chains is quite different.

The authors wish to thank Prof. Dr A. E. van Arkel for his continued help and interest during this investigation and Prof. Dr C. H. MacGillavry for reading the manuscript.

References

- BRINK, C. & MACGILLAVRY, C. H. (1949). Acta Cryst. 2, 158.
- WELLS, H. L., WHEELER, H. L. & PENFIELD, S. L. (1892). Amer. J. Sci. (3), 44, 157.
- PAULING, L. (1939). The Nature of the Chemical Bond. Ithaca: Cornell University Press.